Cathepsin K deficiency reduces elastase perfusion-induced abdominal aortic aneurysms in mice.

نویسندگان

  • Jiusong Sun
  • Galina K Sukhova
  • Jie Zhang
  • Han Chen
  • Sara Sjöberg
  • Peter Libby
  • Mingcan Xia
  • Na Xiong
  • Bruce D Gelb
  • Guo-Ping Shi
چکیده

OBJECTIVE Cathepsin K (CatK) is one of the most potent mammalian elastases. We have previously shown increased expression of CatK in human abdominal aortic aneurysm (AAA) lesions. Whether this protease participates directly in AAA formation, however, remains unknown. METHODS AND RESULTS Mouse experimental AAA was induced with aortic perfusion of a porcine pancreatic elastase. Using this experimental model, we demonstrated that absence of CatK prevented AAA formation in mice 14 days postperfusion. CatK deficiency significantly reduced lesion CD4(+) T-cell content, total lesion and medial cell proliferation and apoptosis, medial smooth muscle cell (SMC) loss, elastinolytic CatL and CatS expression, and elastin fragmentation, but it did not affect AAA lesion Mac-3(+) macrophage accumulation or CD31(+) microvessel numbers. In vitro studies revealed that CatK contributed importantly to CD4(+) T-cell proliferation, SMC apoptosis, and other cysteinyl cathepsin and matrix metalloproteinase expression and activities in SMCs and endothelial cells but played negligible roles in microvessel growth and monocyte migration. AAA lesions from CatK-deficient mice showed reduced elastinolytic cathepsin activities compared with those from wild-type control mice. CONCLUSIONS This study demonstrates that CatK plays an essential role in AAA formation by promoting T-cell proliferation, vascular SMC apoptosis, and elastin degradation and by affecting vascular cell protease expression and activities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cathepsin L activity is essential to elastase perfusion-induced abdominal aortic aneurysms in mice.

OBJECTIVE The development of abdominal aortic aneurysms (AAA) requires extensive aortic wall matrix degradation. Human AAA lesions express high levels of cathepsin L (CatL), one of the most potent mammalian elastases. Whether this protease participates directly in AAA pathogenesis, however, is unknown. METHODS AND RESULTS We generated experimental AAA with aortic elastase perfusion in mice an...

متن کامل

Novel mechanism of aortic aneurysm development in mice associated with smoking and leukocytes.

OBJECTIVE The purpose of this study was to evaluate potential mechanisms promoting abdominal aortic aneurysm development with tobacco smoke (TS) exposure. METHODS AND RESULTS Experiments used the elastase perfusion model of abdominal aortic aneurysms with smoke-free controls. The effect of TS exposure was evaluated in C57/Bl6 mice, after broad-spectrum matrix metalloproteinase inhibition with...

متن کامل

Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms.

Abdominal aortic aneurysms represent a life-threatening condition characterized by chronic inflammation, destructive remodeling of the extracellular matrix, and increased local expression of matrix metalloproteinases (MMPs). Both 92-kD gelatinase (MMP-9) and macrophage elastase (MMP-12) have been implicated in this disease, but it is not known if either is necessary in aneurysmal degeneration. ...

متن کامل

Molecular Medicine Mast Cell Tryptase Deficiency Attenuates Mouse Abdominal Aortic Aneurysm Formation

Rationale: Mast cells (MCs) contribute to the formation of abdominal aortic aneurysms (AAAs) by producing biologically active mediators. Tryptase is the most abundant MC granule protein and participates in MC activation, protease maturation, leukocyte recruitment, and angiogenesis—all processes critical to AAA pathogenesis. Objective: To test the hypothesis that tryptase participates directly i...

متن کامل

Mast cell tryptase deficiency attenuates mouse abdominal aortic aneurysm formation.

RATIONALE Mast cells (MCs) contribute to the formation of abdominal aortic aneurysms (AAAs) by producing biologically active mediators. Tryptase is the most abundant MC granule protein and participates in MC activation, protease maturation, leukocyte recruitment, and angiogenesis-all processes critical to AAA pathogenesis. OBJECTIVE To test the hypothesis that tryptase participates directly i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Arteriosclerosis, thrombosis, and vascular biology

دوره 32 1  شماره 

صفحات  -

تاریخ انتشار 2012